Model-based Predictive Control of Hybrid Systems: A Probabilistic Neural-network Approach to Real-time Control
نویسندگان
چکیده
This paper proposes an approach for reducing the computational complexity of a model-predictive-control strategy for discrete-time hybrid systems with discrete inputs only. Existing solutions are based on dynamic programming and multi-parametric programming approaches, while the one proposed in this paper is based on a modified version of performance-driven reachability analyses. The algorithm abstracts the behaviour of the hybrid system by building a ’tree of evolution’. The nodes of the tree represent the reachable states of a process, and the branches correspond to input combinations leading to designated states. A costfunction value is associated with each node and based on this value the exploration of the tree is driven. For any initial state, an input sequence is thus obtained, driving the system optimally over a finite horizon. According to the model predictive strategy, only the first input is actually applied to the system. The number of possible discrete input combinations is finite and the feasible set of the states of the system may be partitioned according to the optimization results. In the proposed approach, the partitioning is performed offline and a probabilistic neural network (PNN) is then trained by the set of points at the borders of the state-space partitions. The trained PNN is used as a system-state-based control-law classifier. Thus, the online computational effort is minimized and the control can be implemented in real time.
منابع مشابه
Prediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence
Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption....
متن کاملMarkovian Delay Prediction-Based Control of Networked Systems
A new Markov-based method for real time prediction of network transmission time delays is introduced. The method considers a Multi-Layer Perceptron (MLP) neural model for the transmission network, where the number of neurons in the input layer is minimized so that the required calculations are reduced and the method can be implemented in the real-time. For this purpose, the Markov process order...
متن کاملAdaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network
An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...
متن کاملReal-Time Output Feedback Neurolinearization
An adaptive input-output linearization method for general nonlinear systems is developed without using states of the system. Another key feature of this structure is the fact that, it does not need model of the system. In this scheme, neurolinearizer has few weights, so it is practical in adaptive situations. Online training of neuroline...
متن کاملScaling, Modeling and Traffic Control of a Real Railway Network using Max-plus Algebra and Model Predictive Control
Delay time recovery can increase the efficiency of the railway network and increase the attractiveness of railway transport against other transportation systems. This article presents a new dynamical model of railway system. The proposed model is a discrete event systems that is defined based on the deviation of travel time and deviation of stop time of trains. Due to the existence of multiple ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Intelligent and Robotic Systems
دوره 51 شماره
صفحات -
تاریخ انتشار 2008